
AVR Programming
Project

Documentation of AVRprog software
development

Project team: Michael Bäuerle
Postweg 2
70736 Fellbach−Schmiden

Markus Bernauer
Seminarstraße 2
73230 Kirchheim

Last modification: 2006−02−04 by Michael Bäuerle

AVRprog−Documentation Version V0.12pre0

Content
Overview..3

History..3
General..4
Platform and OS support..5

Backend API V0.2 (used by frontend) ...6
Function prototypes...6
Return values...6
Function parameter..7
Interface type (A5: if_type)...7
Sense codes (A6: sense_code)...7

Backend API V0.3 (used by frontend and netlayer client)..8
Function prototypes...8
Return values...9
Function parameter..9
Interface type (A5: if_type)...9
Sense codes (A6: sense_code)...10

Backend API V0.4 (used by frontend and netlayer client)..11
Function prototypes...11
Return values...12
Function parameter..12
Interface type (P5: ’if_type’)...12
Programming method (P2: ’value’ for ’set_prg_method()’)..13
Sense codes (P6: sense_code)...13

Backend...14
General..14
Function call order...14
Error recovery..17
How to write/port a backend..17
How to write programmer drivers for the UNIX backend...17

Netlayer..18
General..18
Implementation..18
Network protocol V0.0 (OSI Layer 5)...19
How to write/port a netlayer...26

Frontend...27
General..27
How to write/port a frontend...27

Bäuerle / Bernauer − 2 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Overview

History
This project was started to develop a complete solution to program Atmel AVR
Microcontrollers in a UNIX environment. Porting it to other OS’s was kept in mind.

At the beginning we have no information about the ’Micro ISP’ and ’Atmel STK300’
programmers we used with Windows software before this project was started.

To solve this problem Markus developed the ’Serial 1’ programmer that uses the RS−232
to transfer data between PC and programmer (Note: The term "serial" means
programming the AVR in the low voltage serial (aka ISP) mode rather than the high
voltage parallel mode. It means NOT the serial RS−232 interface).

This programmer was the first one supported by the UNIX software AVRprog that we
developed later.

Because we like to do things right or not at all, we create this docu to fix project related
information.

AVRprog features:
� Frontend with GUI

Text based frontends are also possible but do not exist at the moment.
� Support for different programmer types

Serial1, STK200, STK300, AVR910, ATK500 and AE−AVR PRG programmers as well
as AVR109 bootloaders are supported at the time of writing.

� Support for different interfaces
RS−232 and IEEE−1284 (aka Centronics) at the moment.

� Supports network connection to use a programmer on a different machine
The network support makes it possible to port only designated components to other
platforms.

� Modular construction
You have to change only one component to support a new programmer, change the
user interface or add network transparent programmer access.

� Well defined interface between components
� Integrated uniform error naming and reporting scheme

All functions use the same error numbers (sense codes) that always have the same
meaning.

The software is intended for easy use − with less menues and self explaining GUI. As
much as possible should be handled by the software − only the things that are really
needed should be given by the user.

Bäuerle / Bernauer − 3 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

General
The software consist of several components that are stacked.

The main components are:
� Frontend: User interface. Communicate with the backend via a unified API
� [Netlayer: Provides a transparent connection between frontend and backend using the

network. Can be omitted]
� Backend: Communicate with the programmer hardware via a driver library. Provide a

unified API for different programmer hardware to the frontend
� Drivers: Used by the backend to communicate with different programmer hardware

(The programmer drivers are treated as part of the backend for this implementation.
The driver API documentation is shipped with the backend)

To give an overview here is the layout of the construction:

(In braces the names of the files that do the job for the Serial1 programmer in UNIX are
specified)

In the local configuration the construction looks like this:

Frontend (frontend)

Backend (libbackend.so)

Driver (libserial1.so)

Serial1 Programmer

With network support like this:

Frontend (frontend)

Netlayer client (libnetclient.so)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [network hop]

Netlayer server (AVRprogd)

Backend (libbackend.so)

Driver (libserial1.so)

Serial1 Programmer

In an outside view all components above the line can be called "Client" and all modules
below the line can be called "Server".

Bäuerle / Bernauer − 4 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Platform and OS support
AVRprog was designed to be platform independent. It should be possible to port it to
nearly all sort of systems. Being maximum user friendly combined with avoiding of bloat
was the major design goal (apart from the fun ;−).

The UNIX version is an implementation based on shared libraries (all modern systems
support them), but shared libraries are not a requirement. The DOS backend and netlayer
server demonstrate an implementation using static libraries and an integrated TCP/IP
network protocol stack.
Finally it should also be possible to completely integrate an AVRprog server into a
programmer that has a network interface build in ...

Note: Not all components are available for all platforms!

The following operating systems on the listed platforms have been tested to work:

UNIX:

� GNU/Linux 2.2
� GNU/Linux 2.4
� GNU/Linux 2.6
� NetBSD 2.0

� GNU/Linux 2.2
� SunOS 5.7 (aka "Solaris 7")

� HP−UX 11.11

� AIX 4.3.3

Bäuerle / Bernauer − 5 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

DOS:

� Microsoft DOS 6.2.0

Don’t ask why there is no Windows version ... nobody has written one yet and we don’t
like Window (Nevertheless it should be no problem to write one).

Please report success or failure if you have tested AVRprog on a platform/OS
combination not listed above.

Bäuerle / Bernauer − 6 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Backend API V0.2 (used by frontend)

Function prototypes
[To use them: Include ’backend.h’]

set_device_file(A5) Interface where programmer is connected to

programmer_enable(A0) Establish connection to programmer

programmer_disable(A0) Shutdown connection to programmer

backend_info(A1) Get backend information (version)

driver_info(A1) Get driver information (driver, version)

request_sense(A6) Get additional information on last error

progmode_enable(A0) Set MCU in programming mode

progmode_disable(A0) Set MCU in running mode

read_devcode(A1) Get MCU device code

chip_erase(A0) Erase flash and EEPROM on MCU

read_flash(A3) Read from MCU flash memory

write_flash(A3) Write to MCU flash memory

read_eeprom(A4) Read from MCU EEPROM memory

write_eeprom(A4) Write to MCU EEPROM memory

write_lock(A2) Write MCU lock bits

Return values
[Type: (unsigned char)]

0 : OK

1 : Error

2 : Not supported by programmer driver library

Bäuerle / Bernauer − 7 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Function parameter
[All strings (char*): 256 characters]

A0 : (void)

A1 : (unsigned char * string)

A2 : (unsigned char lockbyte)

A3 : (unsigned short int address, unsigned short int count,

unsigned short int* data)

A4 : (unsigned short int address, unsigned short int count,

unsigned char* data)

A5 : (char* device_file, unsigned char if_type)

A6 : (unsigned char* sense_code)

Interface type (A5: if_type)
[Type: (unsigned char)]

0 : RS−232

Sense codes (A6: sense_code)
[Type: (unsigned char)]

0 : No sense

1 : Interface type not supported

2 : Device file not exist or have wrong type

3 : Cannot open device file

4 : No programmer found

5 : Programmer not enabled

6 : Cannot close device file

7 : Communication error

8 : Communication timeout

9 : Cannot configure device file

Bäuerle / Bernauer − 8 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Backend API V0.3 (used by frontend and netlayer client)

Function prototypes
[To use them: Include ’backend.h’ (for single application) or ’netclient.h’ (for client/server)]

Group 1 contain functions to establish and shutdown a connection to the programmer, get
version numbers of programs and interfaces and for error recovery.

Group 2 contains functions for controlling the programmer.

Group 1:

set_network_address(A1) Set network address of machine where p
rogrammer is attached to

set_device_file(A5) Interface where programmer is connected to

programmer_enable(A0) Establish connection to programmer

programmer_disable(A0) Shutdown connection to programmer

backend_info(A1) Get backend information (version)

driver_info(A1) Get driver information (driver, version)

network_info(A7) Get network layer information (versions)

request_sense(A6) Get additional information on last error

Group 2:

progmode_enable(A0) Set MCU in programming mode

progmode_disable(A0) Set MCU in running mode

read_devcode(A8) Get MCU device code

chip_erase(A0) Erase flash and EEPROM on MCU

read_flash(A3) Read from MCU flash memory

write_flash(A3) Write to MCU flash memory

read_eeprom(A4) Read from MCU EEPROM memory

write_eeprom(A4) Write to MCU EEPROM memory

write_lock(A2) Write MCU lock bits

Bäuerle / Bernauer − 9 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Return values
[Type: (unsigned char)]

0 : OK

1 : Error

2 : Not supported

Function parameter
[Data arrays: max. 64K − 1 elements Strings: max. 255 chars (including trailing zero)]

A0 : (void)

A1 : (char * string)

A2 : (unsigned char lockbyte)

A3 : (unsigned short int address, unsigned short int wordcount,

unsigned short int* data)

A4 : (unsigned short int address, unsigned short int bytecount,

unsigned char* data)

A5 : (char* device_file, unsigned char if_type)

A6 : (unsigned char* sense_code)

A7 : (char * string, char * string)

A8 : (unsigned char* device_code) [0x1E at low address]

Interface type (A5: if_type)
[Type: (unsigned char)]

0 : RS−232

1 : IEEE−1284

Bäuerle / Bernauer − 10 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Sense codes (A6: sense_code)
[Type: (unsigned char)]

0 : No sense

1 : Interface type not supported

2 : Device file not exist or have wrong type

3 : Cannot open device file

4 : No programmer found

5 : Programmer not enabled

6 : Cannot close device file

7 : Communication error (Programmer driver)

8 : Communication timeout (Programmer driver)

9 : Cannot configure device file

10 : Cannot open network connection

11 : Communication error (Network)

12 : No open network connection

13 : MCU not supported

14 : MCU locked

Bäuerle / Bernauer − 11 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Backend API V0.4 (used by frontend and netlayer client)

Function prototypes
[Include "backend.h" (for single applicatiom) or "netclient.h" (for client/server)]
Mandatory functions are printed bold and are not allowed to return 2 (not supported).

Group 1 Functions that change state of AVRprog
Group 2 Functions that do not change state of AVRprog

Group 1:

programmer_enable(P0) Establish connection to programmer

programmer_disable(P0) Shutdown connection to programmer

progmode_enable(P0) Set device into programming mode

progmode_disable(P0) Set device into running mode

Group 2:

request_sense(P6) Get additional information on last error

set_network_address(P1) Set network address of server machine

set_device_file(P5) Set Interface to which the programmer is
connected

set_prg_method(P2) Select programming method

network_info(P7) Get network layer information (versions)

backend_info(P1) Get backend information (version)

driver_info(P1) Get driver information (driver, version)

read_devcode(P8) Get MCU device code

chip_erase(P0) Erase and unlock device

read_flash(P3) Read from Flash−EPROM memory

write_flash(P3) Write to Flash−EPROM memory

read_eeprom(P4) Read from EEPROM memory

write_eeprom(P4) Write to EEPROM memory

read_lock(P9) Read lock bits

write_lock(P2) Write lock bits

read_fuses(P10) Read fuse bits

write_fuses(P11) Write fuse bits

read_osc_calib(P12) Read oscillator calibration byte(s)

Bäuerle / Bernauer − 12 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Return values
[Type: (unsigned char)]

0 : OK

1 : Error

2 : Not supported

Function parameter
[Data arrays if not specified: max. 64K elements; Strings if not specified: max. 255 chars]

P0 : (void)

P1 : (char* string)

P2 : (unsigned char value)

P3 : (unsigned short int address, unsigned short int wordcount,

unsigned short int* data)

P4 : (unsigned short int address, unsigned short int bytecount,

unsigned char* data)

P5 : (char* device_file, unsigned char if_type)

P6 : (unsigned char* sense_code)

P7 : (char* string, char* string)

P8 : (unsigned char device_code[3]) [0x1E at low address]

P9 : (unsigned char* value)

P10 : (unsigned char mask, unsigned char* low, unsigned char* high,
unsigned char* extended) [’mask’: Set bits indicate valid fuse bytes]

P11 : (unsigned char mask, unsigned char low, unsigned char high,
unsigned char extended) [’mask’: Set bits indicate valid fuse bytes]

P12 : (unsigned char count, unsigned char* buffer)

Interface type (P5: ’if_type’)
[Type: (unsigned char)]

0 : RS−232

1 : IEEE−1284

Bäuerle / Bernauer − 13 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Programming method (P2: ’value’ for ’set_prg_method()’)
[Type: (unsigned char)]

0 : LVS (’Low Voltage Serial’ aka ’ISP’) [Default if nothing is set]

1 : HVP (’High Voltage Parallel’)

2 : HVS (’High Voltage Serial’)

3 : JTAG

Sense codes (P6: sense_code)
[Type: (unsigned char)]

0 : No sense

1 : Interface type not supported

2 : Device file not exist or have wrong type

3 : Cannot open device file

4 : No programmer found

5 : Programmer not enabled

6 : Cannot close device file (obsolete, for compatibility only)

7 : Communication error (Programmer driver)

8 : Communication timeout (Programmer driver)

9 : Cannot configure device file

10 : Cannot open network connection

11 : Communication error (Network)

12 : No open network connection

13 : MCU not supported

14 : MCU locked

15 : Programming mode not enabled

16 : Programming method not supported

Bäuerle / Bernauer − 14 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Backend

General
The backend is used to provide a unified API for different programmer hardware.

It uses autodetection to find out the programmer type. The frontend don’t have to care for
different programmers.

Multiple programmers can be connected to different interfaces of the (server) machine.
They are selected with the ’set_device_file()’ call. Since API V0.4 every programmer can
support multiple programming techniques. They are selected with the ’set_prg_method()’
call.

All functions for the used version of the Backend API must be implemented, but it is legal
to always return 2 (not supported) − Exept the functions printed bold, they are mandatory
and are not allowed to return 2 (not supported).

All components should use the same interface version but all APIs with the same major
number are backward compatible. This means that old frontends or netlayer servers can
use new backends (but old backends or netlayer clients do not work with new frontends).

Function call order
API V0.2:

� Error recovery: ’request_sense()’ after return code ’1’ at every stage
� Open connection: [’backend_info()’] −> ’set_device_file()’ −> ’programmer_enable()’

[−> ’driver_info()’]
� Use connection: ’progmode_enable()’ [−> all others] −> ’progmode_disable()’
� Close connection: ’programmer_disable()’

API V0.3:
� Error recovery: ’request_sense()’

Allowed after return code ’1’ at every stage. Not allowed after other return codes.
� Open connection: ’set_network_address()’ [−> ’network_info()’] −> [’backend_info()’] −>

’set_device_file()’ −> ’programmer_enable()’ [−> ’driver_info()’]
The optional ’*_info()’ calls are allowed at every position. The specified position shows
the earliest time they return valid information.

� Use connection: ’progmode_enable()’ [−> all others] −> ’progmode_disable()’
You never have to disable programming mode except you want to do so even if the
datasheet of the MCU specify this (for chip erase or such things) − the backend will do
this automatically if it is needed.

� Close connection: ’programmer_disable()’ −> ’set_network_address("disconnect")

If there is no netlayer present, ’set_network_address()’ returns 2 (not supported) and the
following ’network_info()’ as well as the final disconnect will also return 2.

Always implement the specified call order to ensure compatibility.

Bäuerle / Bernauer − 15 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

API V0.4:

This API introduces a state machine. AVRprog can be in one of 3 major states:

1) Down

2) Programmer ready

3) Device ready

Only the 4 functions in the following diagram change the state when returning 0 (OK):

St at e Est abl i sh Shut down
−−

Devi ce r eady (2) x → x
↑ ↓

progmode_enable() progmode_disable()
↑ ↓

Pr ogr ammer x ←→ x
r eady (1) ↑ ↓

programmer_enable() programmer_disable()
↑ ↓

Down (0) x ← x

If one of these functions return 1 (Error), the state is unchanged.

Remember:
The backend never do implicit state changes − even if an illegal call order is used!

The following list specify which functions are allowed in which state (Mandatory functions
are printed bold, state changing functions are printed italic):

Function calls allowed in State 0 (’Down’):
� ’set_network_address()’
� ’set_device_file()’
� ’programmer_enable()’
� ’get_network_info()’
� ’get_backend_info()’
� ’request_sense()’

Order:

[’set_network_address()’ => ’get_network_info()’] => ’set_device_file()’
 => ’programmer_enable()’

’request_sense()’ is valid if a function have returned 1 (Error)

’get_backend_info()’ is independent

Bäuerle / Bernauer − 16 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Function calls allowed in State 1 (’Programmer ready’):
� ’programmer_disable()’
� ’set_prg_method()’
� ’progmode_enable()’
� ’get_network_info()’
� ’get_backend_info()’
� ’get_driver_info()’
� ’request_sense()’

Order:

[’set_prg_method()’] => ’progmode_enable()’

’request_sense()’ is valid if a function have returned 1 (Error)

All other are independent

Function calls allowed in State 2 (’Device ready’):
� ’progmode_disable()’
� ’get_network_info()’
� ’get_backend_info()’
� ’get_driver_info()’
� ’chip_erase()’
� ’read_lock()’
� ’write_lock()’
� ’read_fuse()’
� ’write_fuse()’
� ’read_osc_calib()’
� ’write_osc_calib()’
� ’read_flash()’
� ’write_flash()’
� ’read_eeprom()’
� ’write_eeprom()’
� ’request_sense()’

Order:

’request_sense()’ is valid if a function have returned 1 (Error)

All other are independent

Bäuerle / Bernauer − 17 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Note:
If the user request to quit, the frontend must go back to ’Down’ state before terminating.

Error recovery
Use the ’request_sense()’ function to get information what goes wrong. If
’request_sense()’ returns 0 (OK) with sense code 0 (No sense), there is no information
about the error.

Frontend design notes:
� The backend stay in the current state when 1 (Error) is returned by one of the state

changing functions ... This means you have to retry or proceed with the corresponding
function in the diagram (see previous section) to ensure the correct function call order.

� Do not restart from the beginning until you are in the ’Down’ state again!

Backend design notes:
� The backend should never do implicit state changes, even if an illegal function call

order is used by the frontend.
� To avoid deadlocks, the ’x_disable()’ functions should return 1 (Error) only on state

errors (if the function call is not allowed in the current state). If another error occur, it
should not be reported to the frontend − Instead do the best possible error recovery,
execute the state change and report 0 (OK).

How to write/port a backend
Creating a library that exports the mandatory functions specified in the backend API
should be enough to be compatible with AVRprog. All optional functions must be present
but are allowed to do nothing returning 2 (not supported).

Always implement the newest available API. Backward compatibility is maintained within
the same major number.

How to write programmer drivers for the UNIX backend
UNIX backend since V0.12 contain a driver ’skeleton’ that is fully functional integrated into
the backend (This means that a driver library is compiled for it and the autodetect
mechanism ask it whether a programmer is found). It is disabled by always returning "no
programmer found", removing a single line activates the driver.

The ’skeleton’ driver lacks any communication code but contain function stubs with
comments what to implement there. Together with the code of the existing drivers as
reference it should be really easy to implement support for a given programmer into the
’skeleton’ driver.

Bäuerle / Bernauer − 18 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Netlayer

General
The network layer ("netlayer") is a nearly transparent data link between the frontend and
the backend.

The backend with the network layer on top looks like the bare backend again. Therefore
no (in reality a little bit of work is neccessary) changes are required in the frontend.

The exception is the network address of the target machine − the frontend must provide a
possibility to specify it.

The network layer splits the application in a client and a server part. Both parts
communicate via the network.

The API version of the network components should match to the version used in the
backend and frontend. The same compatibility rules as for the backend apply (newer API
versions on the lower level components are allowed).

Implementation
To use the netlayer, the frontend must be linked against the netlayer client library instead
of the backend library.

On the target machine, the netlayer server daemon must be running. This daemon is
linked against the backend library.

If the netlayer construction is used and a local programmer should be accessed, the
loopback device can be used. Therefore the own network address must be specified as
the target machine (and a netlayer server daemon must be running on the local machine).

At the moment only the IP protocol (V4) is supported by the netlayer.

TCP is used on OSI Layer 4.

Bäuerle / Bernauer − 19 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Network protocol V0.0 (OSI Layer 5)

General:

This protocol is used to transport commands, status and the programming data between
server and client via a network connection.

This protocol uses packets of different size, but similar structure to transmit the data.

Note: This protocol is suited to transport API V0.3 calls only!

General packet layout:

Header:

Byte 0: Magic number (0xAA)

Byte 1: Size of the data filed (high byte)

Byte 2: Size of the data field (low byte)

Byte 3: Type of the data (command, status or programming data)

Data field:

Byte 4: ID / Byte 0 of the data

Byte 5: Byte 1 of the data

Byte 6: Byte 2 of the data

...

Byte n < 517: Last Byte of the data (max. 512 data bytes −> max. 516 bytes
packetsize)

Type numbers (Byte 3):

0: Command (can contain additional data)

1: Status (contains only status byte)

2: Data (contains only data)

Commands, Status:

Command and status packets contain a ID number in Byte 4 (first data byte) to identify the
command or the status.

Command packets can contain a data field. This data filed starts at byte 5 in this case.

Status packets never contain a data field!

Bäuerle / Bernauer − 20 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Command ID’s:

0: Check my protocol version

1: Listen to reply

2: Get server version

3: Disconnect (This aborts the OSI Layer 4 and 5 connections)

4: Set device file

5: Programmer enable

6: Programmer disable

7: Backend info

8: Driver info

9: Request sense

10: Programming mode enable

11: Programming mode disable

12: Read device code

13: Chip erase

14: Read flash memory

15: Write flash memory

16: Read EEPROM memory

17: Write EEPROM memory

18: Write lock bits

Status ID’s:

0: OK / Accepted

1: Error / Rejected

2: Not supported

3: End of data

4: Abort

Bäuerle / Bernauer − 21 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Communication:

In the following definition the term ’transfer’ means one complete operation (see below).

Transmission:

The term ’transmission’ means the complete unidirectional data traffic until one must wait
for the other side (or no more data is left at the end of a transfer):

� A transmission can consist of several packets.
� A transmission can use one of the following transfer types:

a) Command packet, Statuspacket

b) Commandpacket, n Datapackets, Statuspacket

c) Statuspacket
� Each transmission must end with a status packet!!!
� Type a) or b) transmissions always end with status 3 (End of data) on success, or

status 4 (Abort) if something goes wrong.

Transfer:

A transfer have the following phases:

1) Command and data transmission (Type a) or b)) from client to server

2) Statustransmission (Type c)) from server to client

3) [Data transmission (Type a) or b)) from server to client if the client requested it
(because a transmission cannot start with a data packet, it starts with command 1
(Listen to reply))]

Therefor each transfer consists of 3 packets minimum (2 for request, 1 for reply)

A transfer must be initiated by the client. The server is passive and do not send something
without request.

Connection :

Before normal commands and data can be transferred, a connection at OSI Layer 4 and a
session at OSI Layer 5 must be established.

This is only possible, if the Layer 5 protocol versions of server and client are compatible.

Only the client can establish a session. This works as follows:
� The client establish a Layer 4 connection
� The client sends command 1 (Check my protocol version) to the server. In the data field

the client Layer 5 protocol version is transferred
� The client terminates the transmission with status 3 (End of data)
� The server is checking the supplied version and send status 0 (Accept) or status 1

(Reject)

Bäuerle / Bernauer − 22 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

If the server send status 0 (Accept) the session is established.

If the server send status 1 (Reject) the Layer 5 protocol versions are not compatible and
the Layer 4 connection is closed by the server.

Command description (client view):

[C: Command packet D: Data packet S: Status packet]

Command and status bytes are in ’unsigned char’ format.

0: Check my protocol version (Only valid as the first command)

Send:

C(0)

D(Major protocol version number <unsigned char>,

Minor protocol version number <unsigned char>)

S(3)

Expect:

S(x)

x=0: Protocol version accepted, Layer 5 Session established

x=1: Protocol version not supported

1: Listen to reply

This is the only command that is used by the server (it is forbidden for the
client)

Expect:

D(Reply)

S(3)

2: Get server version

Send:

C(2)

S(3)

Expect:

S

[C(1)

D(Major version number <unsigned char>, Minor version number

<unsigned char>, Major interface version number <unsigned char>,
Minor interface version number <unsigned char>)

S(3)]

Bäuerle / Bernauer − 23 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

3: Disconnect (This aborts the OSI Layer 4 and 5 connections)

Send:

C(3)

S(3)

Expect:

S

4: Set device file

Send:

C(4)

D (Type <unsigned char>, String <char[]>)

S(3)

Expect:

S

5: Programmer enable

Send:

C(5)

S(3)

Expect:

S

6: Programmer disable

Send:

C(6)

S(3)

Expect:

S

7: Backend info

Send:

C(7)

S(3)

Expect:

S

[C(1)

D (String <char[]>)

S(3)]

Bäuerle / Bernauer − 24 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

8: Driver info

Send:

C(8)

S(3)

Expect:

S

[C(1)

D (String <char[]>)

S(3)]

9: Request sense

Send:

C(9)

S(3)

Expect:

S

[C(1)

D(Sense code <unsigned char>)

S(3)]

10: Programming mode enable

Send:

C(10)

S(3)

Expect:

S

11: Programming mode disable

Send:

C(11)

S(3)

Expect:

S

Bäuerle / Bernauer − 25 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

12: Read device code

Send:

C(12)

S(3)

Expect:

S

[C(1)

D(Device code <char[3]>)

S(3)]

13: Chip erase

Send:

C(13)

S(3)

Expect:

S

14: Read flash memory

Send:

C(14)

D (Address (high byte first) <unsigned short int>,

Word count (high byte first) <unsigned short int>)

S(3)

Expect:

S

[C(1)

D (Data (high byte first) <unsigned short int[]>)

S(3)]

15: Write flash memory

Send:

C(15)

D (Address (high byte first) <unsigned short int>,

Word count (high byte first) <unsigned short int>,

Data (high byte first) <unsigned short int[]>)

S(3)

Expect:

S

Bäuerle / Bernauer − 26 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

16: Read EEPROM memory

Send:

C(16)

D (Address (high byte first) <unsigned short int>,

Byte count (high byte first) <unsigned short int>)

S(3)

Expect:

S

[C(1)

D (Data <unsigned char[]>)

S(3)]

17: Write EEPROM memory

Send:

C(17)

D (Address (high byte first) <unsigned short int>,

Byte count (high byte first) <unsigned short int>,

Data <unsigned char[]>)

S(3)

Expect:

S

18: Write lock bits

Send:

C(18)

D (Lockbyte <unsigned char>)

S(3)

Expect:

S

How to write/port a netlayer
The main job of the netlayer is to be invisible ;−) You have to hide all the network stuff
inside the netlayer and present a backend API on the top side. On the bottom side you
have to do valid calls for the same backend API to get the functionality from the backend.

It is like a tunnel for the API calls from the top side to the bottom side. The status must be
transferred in the opposite direction.

Using our network protocol makes it compatible with other netlayer components.

Bäuerle / Bernauer − 27 − Last modification: 2006−02−04

AVRprog−Documentation Version V0.12pre0

Frontend

General
The frontend implements the user interface. This can be a simple text based command
interpreter, an automated script or a nice graphical window with menus and buttons. The
frontend only have to deal with the user − it need to know nothing about the used
programming hardware, only to which machine it is connected to.

The frontend must implement and maintain the major AVRprog states and the resulting
call order specified in the backend section. It must also deal with data file formats. The
rest is pure presentation.

How to write/port a frontend
The minimum implementation must at least implement the mandatory backend API
function calls to create the state machine and error recovery system. Additionally one or
more of the optional commands must be implemented to be able to do something useful.

EOF

Bäuerle / Bernauer − 28 − Last modification: 2006−02−04

